Предметы, подброшенные в воздух
Вы бросаете предмет вверх по вертикали. Скорость его взлета постепенно убывает, доходит до нуля (рис. А). Дальше предмет начинает падать, скорость возрастает — по тем же делениям, что и при взлете, но в обратном порядке.
Если бросить предмет не вертикально, а под углом, его полет получит два направления: вертикальное и горизонтальное. Скорость подъема, как и в прошлом примере, постепенно угаснет, после чего наступит ускоряющееся движение вниз, а горизонтальное движение останется почти без изменений. Предмет пролетит по траектории, показанной на рис. В.
Резиновый мяч, упавший на твердую поверхность, может совершить серию прыжков в виде траекторий на рис. С; при каждом следующем ударе энергия мяча убывает, следовательно, уменьшается и траектория полета.
На этом же рисунке показано расположение фаз движения мяча. Фаза, идущая сразу после удара, должна частично перекрывать предыдущую; следующая фаза помещается уже с отрывом, учитывая полученную при отскоке скорость; ближе к зениту траектории фазы будут располагаться все плотнее, поскольку скорость уменьшается; дальше, с падением мяча, скорость вновь нарастает и расстояние между фазами увеличивается.
При очень большой скорости, когда дистанция между фазами превышает диаметр самого мяча, рекомендуется вытягивать мяч по оси движения и добавлять сзади спидлайны (см.о них на стр.110). Это поможет глазу соединить разрозненные фазы в цельное движение.
А) Скорость мяча, взлетающего
по вертикали, уменьшается
и полностью гаснет под действием
гравитации. Эта же шкала
может быть использована
для падения мяча.
В) Шар, брошенный вверх, описывает траекторию. | |||
С) Резиновый мяч ударяется о твердое основание; каждый раз траектория полета уменьшается, поскольку теряется первоначально приданная энергия. | |||
D) Рисованный персонаж движется по тем же законам, что и мяч. |
Вращение предметов
Говоря о полете подброшенного мяча по траектории, мы имеем в виду, что расчет движения ведется от центра тяжести данного предмета.
Масса любого тела движется соответственно своему центру тяжести.
Предметы несимметричной формы
Если в воздухе летит предмет неправильной формы, каждая фаза его полета отмечается на траектории по точке, где сосредоточен центр тяжести. Это важно, поскольку большинство предметов в полете вращаются вокруг своей оси.
Например, у тяжелого молота основной вес находится в металлической головке, следовательно, центр тяжести нужно искать в этой части. Отсюда положения молота будут выглядеть так, как показано на рис. А. По такому принципу можно рассчитывать движение других объектов. При большой скорости перспективное сокращение вращающегося предмета малозаметно. Поэтому для различных фаз полета молота можно использовать один рисунок с отметкой центра тяжести. По этой точке рисунок совмещается с делением траектории, устанавливается под нужным углом и переводится на чистый лист. Заготовка сдвигается на следующее деление с соответствующим наклоном, перерисовывается, снова сдвигается и т. д.
Одушевленные объекты (персонажи)
В объектах с изменяющейся формой — как, например, человеческих фигурах — меняется и центр тяжести. И все же, если человек падает или прыгает в воздухе, его полет нужно рассчитывать точно по делениям траектории, совмещая их с центром тяжести фигуры так же, как при вращении неодушевленных объектов.
А) Объект, перемещаясь в свободном полете, движется по определенной траектории благодаря земному притяжению. Подброшенный молоток вращается вокруг своей оси, в то же время его центр тяжести пролегает по заданной траектории. |
В) Человечек подпрыгивает и делает в воздухе кульбит, при этом его центр тяжести проходит строго по траектории. |
Сила, передаваемая через гибкие шарниры
Вообразите себе палку со шнуром на одном конце, лежащую на гладкой поверхности, (рис. А). С помощью шнура дерните палку направо под острым углом относительно ее продольной оси.
Сначала, очевидно, шнур вытянется в прямую линию, а палка останется на месте. Когда сила натяжения перейдет к ней, палка повернется вокруг своей оси, расположенной в середине, и только когда ее положение окажется на одной линии со шнуром, она двинется в сторону рывка (рис. В).
Если вместо гибкого шнура использовать вторую палку, соединенную с первой посредством шарнира (рис. С), произойдет действие, аналогичное предыдущему, но с той разницей, что сила передастся сразу, минуя стадию растягивания шнура.
Если вторую палку (она заштрихована черным) двигать с поворотом, как на рис. D и Е, движение белой палки будет примерно соответствовать приведенной схеме при условии, что шарниры безукоризненно гибкие. Если роль движителя передать белой палке, то черная палка будет вести себя подобным образом.
Основная особенность таких движений состоит в том, что когда вторая (пассивная) палка движется под воздействием первой (активной), ее фазы в момент поворота будут частично перекрывать друг друга. Когда одна палка двигает две другие, соединенные с ней шарнирами, эффект инертного движения особенно заметен (рис. F).
Действие сил через гибкие сочленения. А-E) Движение палочки, получившей импульс через гибкий шнур. Белая палочка движется под воздействием черной С-Е. F) Движение трех палочек, скрепленных гибкими шарнирами. |
Сила, передаваемая через шарнирные суставы
Человеческий или животный персонаж можно представить себе как комбинацию отдельных частей тела, соединенных боле или менее гибкими суставами. Нога состоит из тазобедренной кости, связанной шарнирным суставом; нижняя часть ноги соединена с верхней коленным суставом; ступня скреплена с лодыжкой подвижными суставами, система суставов управляет пальцами ног.
Таким же образом соединена рука с плечом. Если плечо резко движется назад, сила будет последовательно передаваться от одной части руки к другой через суставы — как на рис. А. Сразу же после рывка вытянется предплечье, удерживаемое тяжестью остальной части руки, затем она передаст силу локтевому суставу, который потянет за собой запястье, кисть и т.д.
Конечно, у живых существ помимо внешнего воздействия есть мускульная сила, способная изменить характер движения: затормозить его, изменить направление. Тем не менее в анимации принцип остаточного движения (подробнее о нем на стр. 60 — 61) является одним из основных средств выразительности и аниматор старается подчеркивать его при одушевлении персонажей. Чем быстрее движение, тем больше гиперболизации. Поэтому руки и ноги можно двигать по той же схеме, что и палки в предыдущем примере. На рис. В гибкая кисть руки отстает от локтя и предплечья, толкающих ее вперед, а затем сама движется дальше, когда остальная часть руки уже остановилась. Ступня на рис. С
отстает от поднятой в колене ноги, но при опускании носок ее задирается кверху, продолжая по инерции двигаться в ранее заданном направлении. Такой же момент инерции испытывает ступня на рис. D.
На рис. Е дирижерская палочка с отставанием повторяет движения держащей ее руки.
Принцип действия сил через гибкие соединения одинаково приложим в одушевлении как человеческих, так и животных персонажей. |
Пространственное распределение фаз (общие замечания)
Когда физическое тело, находящееся в статике, перемещается из одной точки в другую и снова останавливается, оно, согласно естественным законам, начинает с медленного движения и заканчивает постепенным замедлением, достигая максимального темпа в средней части дистанции (рис. А). В деталях можно по-всякому варьировать, но общий принцип именно таков.
По такой схеме движется и поршень: аниматор должен уменьшать деления между фазами в момент, когда он меняет направление. Такой расчет можно привести, распределив на равном расстоянии точки на окружности и проецируя их в прямые линии (рис. В).
А) Движение объекта с постепенным нарастанием скорости и последующим угасанием. |
В) Вращение круга, проецируемое на вертикальную прямую, дает гармонический переход из статики к движению и затем снова в статику. |
В анимации бывает трудно выстраивать шкалу таким способом. Поэтому многие аниматоры пользуются другим приемом: делят общее расстояние пополам, находят среднюю фазу, затем разделяют надвое интервал между средней и крайней фазой. Потом этот отрезок тоже делят и т.д., а остальную работу проделывает уже фазовщик (см. схему С).
Действие человека с пилой сходно с движением поршня: тело подается с ускорением вперед, замедляется перед остановкой, с ускорением отклоняется назад, снова замедляется у крайней точки и т.д. Вес тела переносится из одной точки опоры в другую, соответственно этому размещаются и рисунки. Фазы движения руки с пилой имеют другое пространственное деление (см. стр.75), поскольку работа пилы требует более широкого диапазона, чем качание корпуса.
С) Метод нахождения средних промежуточных фаз при изменении скорости движения. |
D) Пильщик замедляет движение в обоих крайних положениях и убыстряет его в середине. |
Пространственное размещение фаз
Как уже говорилось, точкой отсчета для тайминга служит постоянная скорость проекции — 24 кадра в секунду. Если объект преодолевает определенную дистанцию за 6 кадров, то интервалы между фазами должны быть вдвое больше, чем при движении на то же расстояние за 12 кадров. Таким образом, тайминг есть определение количества фаз и расстояния между ними на конкретном отрезке движения.
Сколько нужно фаз, чтобы рука сделала жест, приведенный на рис. А? Ответить на этот вопрос можно будет только получив дополнительную информацию: как реагирует персонаж — быстро или медленно? Является ли данный жест указующим или предостерегающим? Участвует в движении вся рука или жест ограничен движением пальца?
Если это мягкий жест, движение может занять около 16 кадров (при записи по два кадра потребуется 8 рисунков). Если рука до начала жеста была в статике и в конце вновь остановится, рисунки должны располагаться более тесно в обеих крайних точках.
Это сообщит руке ощущение веса.
A) Простое движение руки с ускорением в начале и замедлением в конце. B) Более резкий жест: на фазах 1-5 замах, 6-9 рука выбрасывается вперед дальше положенного, на 10-12 приходит в окончательное положение. С) Пример преувеличения: лягающий осел. Сверху показано, как распределяются промежуточные фазы. |
|